Hot PLS

Kristian Hovde Liland has authored a paper on classification in a fixed hierarchy using PLS-based methods together with Achim Kohler and Volha Shapaval. The paper is titled: “Hot PLS—a framework for hierarchically ordered taxonomic classification by partial least squares” and was recently published in the journal Chemometrics and Intelligent Laboratory Systems.

Highlights:

  • Classification in a fixed hierarchy
  • Utilization of replicate measurements for improved robustness through majority voting
  • Automatic model building and complexity estimation from taxonomic information
  • Detection of outliers and samples representing new classes absent in calibration

Abstract

A novel framework for classification by partial least squares in a fixed hierarchy is presented. The hierarchical approach ensures flexible local modelling with varying complexity. It results in an intuitive classification path from the highest taxonomic levels down to species and beyond. Results are presented as phylogenetic trees with local diagnostic information to gain maximum information about the classification and help the researcher to focus on interesting phenomena.

Information on sample replicates is included in the classification to increase performance and avoid misclassifications due to low quality measurements. Detection of samples coming from previously unobserved classes is enabled by estimating cut-off distances from the calibration data classes. To further increase flexibility and improve customization the canonical powered partial least squares algorithm is used for modelling and classification together with linear discriminant analysis. This opens up for additional sample response information and forced sharpening of focus on important variables. The presented framework is not limited to biological taxonomy, but was first developed for this purpose.

Keywords

  • Partial least squares
  • Taxonomy
  • Fixed hierarchy
  • Local modelling
  • Replicate measurements
  • Classification

Full citation

Kristian Hovde Liland, Achim Kohler, Volha Shapaval, Hot PLS—a framework for hierarchically ordered taxonomic classification by partial least squares. Chemometrics and Intelligent Laboratory Systems, Volume 138, 15 November 2014, Pages 41–47.

DOI: 10.1016/j.chemolab.2014.07.010

http://dx.doi.org/10.1016/j.chemolab.2014.07.010

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s